Journal Article FZJ-2013-00623

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
In situ fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors

 ;  ;  ;  ;  ;  ;

2012
IOP Publ. Bristol

Nanotechnology 23(48), 485301 () [10.1088/0957-4484/23/48/485301]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: In situ fabrication in a single step of thin films of alumina exhibiting a thickness of less than 100 nm and nanopores with a highly regular diameter distribution in order to pattern nanostructures over field-effect devices is a critical issue and has not previously been demonstrated. Here we report the fabrication in situ of 50 nm thick ultrathin nanoporous alumina membranes with a regular pore size directly over metal-free gate ion-sensitive field-effect transistors. Depositing thin films of aluminum by an electron beam at a relatively low rate of deposition on top of chips containing the transistors and using a conventional single-step anodization process permits the production of a well-adhering nanoporous ultrathin layer of alumina on the surface of the devices. The anodization process does not substantially affect the electrical properties of the transistors. The small thickness and pore size of ultrathin alumina membranes allow them to be sequentially employed as masks for patterning Au nanocrystals grown by an electroless approach directly on the top of the transistors. The patterning process using a wet chemical approach enables the size of the patterned crystals to be controlled not only by the dimensions of the pores of alumina, but also by the concentration of the reactants employed. Surface modification of these nanocrystals with alkanethiol molecules demonstrates that the electrostatic charge of the functional groups of the molecules can modulate the electrical characteristics of the transistors. These results represent substantial progress towards the development of novel nanostructured arrays on top of field-effect devices that can be applied for chemical sensing or non-volatile memories.

Classification:

Contributing Institute(s):
  1. Bioelektronik (PGI-8)
  2. JARA-FIT (JARA-FIT)
  3. Bioelektronik (ICS-8)
  4. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 423 - Sensorics and bioinspired systems (POF2-423) (POF2-423)
  2. 453 - Physics of the Cell (POF2-453) (POF2-453)

Appears in the scientific report 2012
Database coverage:
Medline ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IMD > IMD-2
Institute Collections > IBI > IBI-3
Workflow collections > Public records
ICS > ICS-8
IEK > IEK-1
Publications database
PGI-8

 Record created 2013-01-22, last modified 2024-07-11


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)