Journal Article FZJ-2013-02243

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound

 ;  ;  ;

2013
Academic Press Orlando, Fla.

NeuroImage 77, 133 - 147 () [10.1016/j.neuroimage.2013.03.013]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Chronic subjective tinnitus is an auditory phantom phenomenon characterized by abnormal neuronal synchrony in the central auditory system. As recently shown in a proof of concept clinical trial, acoustic coordinated reset (CR) neuromodulation causes a significant relief of tinnitus symptoms combined with a significant decrease of pathological oscillatory activity in a network comprising auditory and non-auditory brain areas. The objective of the present study was to analyze whether CR therapy caused an alteration of the effective connectivity in a tinnitus related network of localized EEG brain sources. To determine which connections matter, in a first step, we considered a larger network of brain sources previously associated with tinnitus. To that network we applied a data-driven approach, combining empirical mode decomposition and partial directed coherence analysis, in patients with bilateral tinnitus before and after 12weeks of CR therapy as well as in healthy controls. To increase the signal-to-noise ratio, we focused on the good responders, classified by a reliable-change-index (RCI). Prior to CR therapy and compared to the healthy controls, the good responders showed a significantly increased connectivity between the left primary cortex auditory cortex and the posterior cingulate cortex in the gamma and delta bands together with a significantly decreased effective connectivity between the right primary auditory cortex and the dorsolateral prefrontal cortex in the alpha band. Intriguingly, after 12weeks of CR therapy most of the pathological interactions were gone, so that the connectivity patterns of good responders and healthy controls became statistically indistinguishable. In addition, we used dynamic causal modeling (DCM) to examine the types of interactions which were altered by CR therapy. Our DCM results show that CR therapy specifically counteracted the imbalance of excitation and inhibition. CR significantly weakened the excitatory connection between posterior cingulate cortex and primary auditory cortex and significantly strengthened inhibitory connections between auditory cortices and the dorsolateral prefrontal cortex. The overall impact of CR therapy on the entire tinnitus-related network showed up as a qualitative transformation of its spectral response, in terms of a drastic change of the shape of its averaged transfer function. Based on our findings we hypothesize that CR therapy restores a silence based cognitive auditory comparator function of the posterior cingulate cortex.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333) (POF2-333)

Appears in the scientific report 2013
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2013-04-29, last modified 2021-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)