000133853 001__ 133853
000133853 005__ 20210129211543.0
000133853 0247_ $$2doi$$a10.1021/nl301052g
000133853 0247_ $$2ISSN$$a1530-6992
000133853 0247_ $$2ISSN$$a1530-6984
000133853 0247_ $$2WOS$$aWOS:000308576000004
000133853 0247_ $$2altmetric$$aaltmetric:21820229
000133853 0247_ $$2pmid$$apmid:22889199
000133853 037__ $$aFZJ-2013-02244
000133853 082__ $$a540
000133853 1001_ $$0P:(DE-Juel1)140272$$aHeedt, Sebastian$$b0$$eCorresponding author
000133853 245__ $$aElectrical Spin Injection into InN Semiconductor Nanowires
000133853 260__ $$aWashington, DC$$bACS Publ.$$c2012
000133853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1368703195_8628
000133853 3367_ $$2DataCite$$aOutput Types/Journal article
000133853 3367_ $$00$$2EndNote$$aJournal Article
000133853 3367_ $$2BibTeX$$aARTICLE
000133853 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000133853 3367_ $$2DRIVER$$aarticle
000133853 500__ $$3POF3_Assignment on 2016-02-29
000133853 520__ $$aWe report on the conditions necessary for the electrical injection of spin-polarized electrons into indium nitride nanowires synthesized from the bottom up by molecular beam epitaxy. The presented results mark the first unequivocal evidence of spin injection into III-V semiconductor nanowires. Utilizing a newly developed preparation scheme, we are able to surmount shadowing effects during the metal deposition. Thus, we avoid strong local anisotropies that arise if the ferromagnetic leads are wrapping around the nanowire. Using a combination of various complementary techniques, inter alia the local Hall effect, we carried out a comprehensive investigation of the coercive fields and switching behaviors of the cobalt micromagnetic spin probes. This enables the identification of a range of aspect ratios in which the mechanism of magnetization reversal is single domain switching. Lateral nanowire spin valves were prepared. The spin relaxation length is demonstrated to be about 200 nm, which provides an incentive to pursue the route toward nanowire spin logic devices.
000133853 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000133853 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000133853 7001_ $$0P:(DE-Juel1)130850$$aMorgan, Caitlin$$b1
000133853 7001_ $$0P:(DE-Juel1)128645$$aWeis, Karl$$b2
000133853 7001_ $$0P:(DE-HGF)0$$aBürgler, D. E.$$b3
000133853 7001_ $$0P:(DE-HGF)0$$aCalarco, R.$$b4
000133853 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b5
000133853 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000133853 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7
000133853 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl301052g$$n9$$p4437 - 4443$$tNano letters$$v12
000133853 909CO $$ooai:juser.fz-juelich.de:133853$$pVDB
000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130850$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128645$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000133853 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000133853 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000133853 9141_ $$y2012
000133853 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000133853 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000133853 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000133853 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000133853 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000133853 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000133853 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000133853 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000133853 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000133853 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000133853 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000133853 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000133853 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000133853 980__ $$ajournal
000133853 980__ $$aVDB
000133853 980__ $$aUNRESTRICTED
000133853 980__ $$aI:(DE-Juel1)PGI-9-20110106
000133853 980__ $$aI:(DE-Juel1)PGI-6-20110106
000133853 980__ $$aI:(DE-82)080009_20140620
000133853 981__ $$aI:(DE-Juel1)PGI-6-20110106