000133853 001__ 133853 000133853 005__ 20210129211543.0 000133853 0247_ $$2doi$$a10.1021/nl301052g 000133853 0247_ $$2ISSN$$a1530-6992 000133853 0247_ $$2ISSN$$a1530-6984 000133853 0247_ $$2WOS$$aWOS:000308576000004 000133853 0247_ $$2altmetric$$aaltmetric:21820229 000133853 0247_ $$2pmid$$apmid:22889199 000133853 037__ $$aFZJ-2013-02244 000133853 082__ $$a540 000133853 1001_ $$0P:(DE-Juel1)140272$$aHeedt, Sebastian$$b0$$eCorresponding author 000133853 245__ $$aElectrical Spin Injection into InN Semiconductor Nanowires 000133853 260__ $$aWashington, DC$$bACS Publ.$$c2012 000133853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1368703195_8628 000133853 3367_ $$2DataCite$$aOutput Types/Journal article 000133853 3367_ $$00$$2EndNote$$aJournal Article 000133853 3367_ $$2BibTeX$$aARTICLE 000133853 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000133853 3367_ $$2DRIVER$$aarticle 000133853 500__ $$3POF3_Assignment on 2016-02-29 000133853 520__ $$aWe report on the conditions necessary for the electrical injection of spin-polarized electrons into indium nitride nanowires synthesized from the bottom up by molecular beam epitaxy. The presented results mark the first unequivocal evidence of spin injection into III-V semiconductor nanowires. Utilizing a newly developed preparation scheme, we are able to surmount shadowing effects during the metal deposition. Thus, we avoid strong local anisotropies that arise if the ferromagnetic leads are wrapping around the nanowire. Using a combination of various complementary techniques, inter alia the local Hall effect, we carried out a comprehensive investigation of the coercive fields and switching behaviors of the cobalt micromagnetic spin probes. This enables the identification of a range of aspect ratios in which the mechanism of magnetization reversal is single domain switching. Lateral nanowire spin valves were prepared. The spin relaxation length is demonstrated to be about 200 nm, which provides an incentive to pursue the route toward nanowire spin logic devices. 000133853 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0 000133853 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000133853 7001_ $$0P:(DE-Juel1)130850$$aMorgan, Caitlin$$b1 000133853 7001_ $$0P:(DE-Juel1)128645$$aWeis, Karl$$b2 000133853 7001_ $$0P:(DE-HGF)0$$aBürgler, D. E.$$b3 000133853 7001_ $$0P:(DE-HGF)0$$aCalarco, R.$$b4 000133853 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b5 000133853 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6 000133853 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7 000133853 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl301052g$$n9$$p4437 - 4443$$tNano letters$$v12 000133853 909CO $$ooai:juser.fz-juelich.de:133853$$pVDB 000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130850$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128645$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000133853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000133853 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0 000133853 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0 000133853 9141_ $$y2012 000133853 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000133853 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000133853 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000133853 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000133853 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000133853 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000133853 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000133853 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000133853 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000133853 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000133853 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000133853 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1 000133853 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000133853 980__ $$ajournal 000133853 980__ $$aVDB 000133853 980__ $$aUNRESTRICTED 000133853 980__ $$aI:(DE-Juel1)PGI-9-20110106 000133853 980__ $$aI:(DE-Juel1)PGI-6-20110106 000133853 980__ $$aI:(DE-82)080009_20140620 000133853 981__ $$aI:(DE-Juel1)PGI-6-20110106