Journal Article PreJuSER-136055

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor


Hindawi Publishing Corporation

Science and Technology of Nuclear Installations Science and technology of nuclear installations 597491 () [10.1155/2008/597491]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA). The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1 μm, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 h ours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

Classification:

Note: Record converted from JUWEL: 18.07.2013; Open Access Journal, Sherpa/Romeo: Publisher's version/PDF may be used

Contributing Institute(s):
  1. Sicherheitsforschung und Reaktortechnik (IEF-6)

Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IFN > IFN-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-6
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2013-07-18, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)