Journal Article FZJ-2013-05431

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Relationship of Regional Cerebral Blood Flow and Kinetic Behaviour of O-(2-18F- Fluoroethyl)-L-Tyrosine Uptake in Cerebral Gliomas.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2014
Lippincott Williams & Wilkins London

Nuclear medicine communications 35(3), 245–251 () [10.1097/MNM.0000000000000036]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Objectives: O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) is an established tracer for brain tumour imaging. 18F-FET kinetics in gliomas appear to have potential for tumour grading, but the mechanisms remain unclear. The aim of this study was to explore the relationship between regional cerebral blood flow (rCBF) as measured by arterial spin labelling MRI and the kinetic behaviour of 18F-FET PET in cerebral gliomas.Materials and methods: Twenty patients with cerebral gliomas were investigated using arterial spin labelling MRI and dynamic 18F-FET PET. Time–activity curves (TACs) of 18F-FET uptake were analysed in 33 different tumour regions. The slopes of TAC during the early (0–5 min; slopeup) and late phases of tracer uptake (17–50 min; slopedown) were fitted using linear regression lines. In addition, TACs of each lesion were assigned to different curve patterns. Furthermore, we calculated tumour-to-brain ratios of 18F-FET uptake. The relationship between 18F-FET parameters and rCBF was determined.Results: 18F-FET uptake in the early phase (slopeup) showed a significant correlation with rCBF (r=0.4; P=0.02). In contrast, both slopedown and TAC patterns showed no significant correlation with rCBF. Furthermore, a significant correlation was found between rCBF and tumour-to-brain ratio (r=0.53; P=0.002).Conclusion: There is a relationship between rCBF and 18F-FET uptake in cerebral gliomas in the initial uptake phase, but the kinetic behaviour of 18F-FET uptake in the late phase is not significantly influenced by rCBF. Thus, the differential kinetic pattern of 18F-FET uptake in high-grade and low-grade gliomas appears to be determined by factors other than rCBF

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
  3. Nuklearchemie (INM-5)
Research Program(s):
  1. 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333) (POF2-333)
  2. 89572 - (Dys-)function and Plasticity (POF2-89572) (POF2-89572)

Appears in the scientific report 2014
Database coverage:
Medline ; Current Contents - Clinical Medicine ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Institute Collections > INM > INM-5
Workflow collections > Public records
Publications database

 Record created 2013-11-18, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)