Journal Article PreJuSER-14074

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Local exact exchange potentials within the all-electron FLAPW method and a comparison with pseudopotential results

 ;  ;  ;

2011
APS College Park, Md.

Physical review / B 83(4), 045105 () [10.1103/PhysRevB.83.045105]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We present a general numerical approach to construct local Kohn-Sham potentials from orbital-dependent functionals within the all-electron full-potential linearized augmented-plane-wave (FLAPW) method, in which core and valence electrons are treated on an equal footing. As a practical example, we present a treatment of the orbital-dependent exact-exchange (EXX) energy and potential. A formulation in terms of a mixed product basis, which is constructed from products of LAPW basis functions, enables a solution of the optimized-effective-potential (OEP) equation with standard numerical algebraic tools and without shape approximations for the resulting potential. We find that the mixed product and LAPW basis sets must be properly balanced to obtain smooth and converged EXX potentials without spurious oscillations. The construction and convergence of the exchange potential are analyzed in detail for diamond. Our all-electron results for C, Si, SiC, Ge, and GaAs semiconductors as well as Ne and Ar noble-gas solids are in very favorable agreement with plane-wave pseudopotential calculations. This confirms the adequacy of the pseudopotential approximation in the context of the EXX-OEP formalism and clarifies a previous contradiction between FLAPW and pseudopotential results.

Keyword(s): J


Note: Financial support from the Deutsche Forschungsgemeinschaft through Priority Program 1145 is gratefully acknowledged.

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (PGI-1)
  2. Quanten-Theorie der Materialien (IAS-1)
  3. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
  4. Jülich-Aachen Research Alliance - Simulation Sciences (JARA-SIM)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)

Appears in the scientific report 2011
Database coverage:
American Physical Society Transfer of Copyright Agreement ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2012-11-13, last modified 2023-04-26