Journal Article FZJ-2013-06463

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Stabilization mechanism of γ-Mg 17 Al 12 and β-Mg 2 Al 3 complex metallic alloys

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2013
IOP Publ. Bristol

Journal of physics / Condensed matter 25(42), 425703 - () [10.1088/0953-8984/25/42/425703]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy εF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of εF, we have studied the stabilization mechanism of two binary CMA phases from the Al–Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the β-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface–Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at εF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic β-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral β' phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of εF was detected for the β' phase on the energy scale of a few 100 meV as determined by the 'thermal observation window' of the Fermi–Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors $\buildrel{\rightharpoonup}\over{G} $ that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the β' phase undergoes a superconducting transition, which slightly increases the cohesive energy and may contribute to relative stability of this phase against competing neighboring phases.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 424 - Exploratory materials and phenomena (POF2-424) (POF2-424)

Appears in the scientific report 2013
Database coverage:
Medline ; Current Contents - Social and Behavioral Sciences ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ER-C > ER-C-1
Institutssammlungen > PGI > PGI-5
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2013-12-16, letzte Änderung am 2024-06-10


Restricted:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)