Journal Article FZJ-2014-03467

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Confinement of Dirac electrons in graphene quantum dots

 ;  ;  ;  ;  ;  ;  ;  ;

2014
APS College Park, Md.

Physical review / B 89(15), 155435 () [10.1103/PhysRevB.89.155435]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We observe spatial confinement of Dirac states on epitaxial graphene quantum dots with low-temperature scanning tunneling microscopy after using oxygen as an intercalant to suppress the surface state of Ir(111) and to effectively decouple graphene from its metal substrate. We analyze the confined electronic states with a relativistic particle-in-a-box model and find a linear dispersion relation. The oxygen-intercalated graphene is p doped [ED=(0.64±0.07) eV] and has a Fermi velocity close to the one of free-standing graphene [vF=(0.96±0.07)×106 m/s].

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
Research Program(s):
  1. 422 - Spin-based and quantum information (POF2-422) (POF2-422)

Appears in the scientific report 2014
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Social and Behavioral Sciences ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2014-06-17, last modified 2023-04-26


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)