Journal Article FZJ-2014-04129

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Hypermetabolism in 18F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy.

 ;  ;  ;  ;  ;  ;  ;  ;

2013
Soc. New York, NY

Journal of nuclear medicine 54(9), 1577 - 1583 () [10.2967/jnumed.112.113183]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: The aim of this study was to prospectively assess the regional changes of glucose metabolism of the cervical spinal cord in patients with degenerative cervical spine stenosis and symptomatic cervical myelopathy after decompressive surgery using 18F-FDG PET. Methods: Twenty patients with symptomatic degenerative monosegmental cervical stenosis with neuroradiologic signs of spinal cord compression underwent decompressive surgery. The clinical course using a functional status score (Japanese Orthopedic Association [JOA] score), 18F-FDG uptake, and MR imaging were assessed before and at follow-up 12 mo after surgery. Pre- and postoperative changes of 18F-FDG PET were correlated to the patients’ clinical outcome. Results: Ten patients demonstrated preoperatively a focally increased 18F-FDG uptake at the level of the stenosis. At follow-up, the uptake declined significantly (P = 0.008), and a significant improvement of JOA scores (P < 0.001) could be observed. The remaining 10 patients were characterized preoperatively by an inconspicuous glucose uptake at the level of cord compression in combination with a poststenotic decrease of 18F-FDG uptake. At follow-up, both JOA scores and 18F-FDG uptake changed insignificantly. Conclusion: Focal glucose hypermetabolism at the level of cervical spinal cord compression may predict an improved outcome after surgical decompression. Thus, this finding on 18F-FDG PET suggests a functional damage in a reversible phase of cervical myelopathy.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
Research Program(s):
  1. 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333) (POF2-333)
  2. 89572 - (Dys-)function and Plasticity (POF2-89572) (POF2-89572)

Appears in the scientific report 2014
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Publications database

 Record created 2014-08-05, last modified 2021-01-29


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)