Journal Article FZJ-2014-05509

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Blackbox quantization of superconducting circuits using exact impedance synthesis

 ;  ;

2014
APS College Park, Md.

Physical review / B 90(13), 134504 () [10.1103/PhysRevB.90.134504]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We propose a new quantization method for superconducting electronic circuits involving a Josephson-junction device coupled to a linear microwave environment. The method is based on an exact impedance synthesis of the microwave environment considered as a blackbox with impedance function Z(s). The synthesized circuit captures dissipative dynamics of the system with resistors coupled to the reactive part of the circuit in a nontrivial way. We quantize the circuit and compute relaxation rates following previous formalisms for lumped element circuit quantization. Up to the errors in the fit our method gives an exact description of the system and its losses.

Classification:

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
  2. Theoretische Nanoelektronik (IAS-3)
Research Program(s):
  1. 422 - Spin-based and quantum information (POF2-422) (POF2-422)

Appears in the scientific report 2014
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-3
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2014-10-30, last modified 2024-06-25


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)