Journal Article FZJ-2014-05836

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Approaching the true ground state of frustrated A-site spinels: A combined magnetization and polarized neutron scattering study

 ;  ;  ;  ;

2014
APS College Park, Md.

Physical review / B 89(17), 174431 () [10.1103/PhysRevB.89.174431]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: We re-investigate the magnetically frustrated, diamond-lattice-antiferromagnet spinels FeAl2O4 and MnAl2O4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2O4, macroscopic measurements evidence a “cusp” in zero field-cooled susceptibility around 13 K. Dynamic magnetic susceptibility and memory effect experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron-scattering studies, absence of long-range magnetic order down to 4 K is confirmed in FeAl2O4. By modeling the powder averaged differential magnetic neutron-scattering cross section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbor shell. The estimated value of the Landé g factor points towards orbital contributions from Fe2+. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2O4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below ≈40 K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short-range order as in FeAl2O4. Results of the present work support the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like A-site spinels which have predominant short-range spin correlations reminiscent of the “spin-liquid” state.

Keyword(s): Basic research (1st) ; Key Technologies (1st) ; Others (1st) ; Fundamental Science (1st) ; Magnetism (2nd) ; Condensed Matter Physics (2nd)

Classification:

Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
  4. JCNS-FRM-II (JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II)
Research Program(s):
  1. 422 - Spin-based and quantum information (POF2-422) (POF2-422)
  2. 424 - Exploratory materials and phenomena (POF2-424) (POF2-424)
  3. 542 - Neutrons (POF2-542) (POF2-542)
  4. 544 - In-house Research with PNI (POF2-544) (POF2-544)
  5. 54G - JCNS (POF2-54G24) (POF2-54G24)
Experiment(s):
  1. DNS: Diffuse scattering neutron time of flight spectrometer (NL6S)

Appears in the scientific report 2014
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2014-11-12, last modified 2025-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)