Journal Article FZJ-2014-06788

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
Elsevier Science Amsterdam [u.a.]

Geoderma 241-242, 262 - 271 () [10.1016/j.geoderma.2014.11.015]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Patterns in crop development and yield are often directly related to lateral and vertical changes in soil texture causing changes in available water and resource supply for plant growth, especially under dry conditions. Relict geomorphologic features, such as old river channels covered by shallow sediments can challenge assumptions of uniformity in precision agriculture, subsurface hydrology, and crop modeling. Hence a better detection of these subsurface structures is of great interest. In this study, the origins of narrow and undulating leaf area index (LAI) patterns showing better crop performance in large scale multi-temporal satellite imagery were for the first time interpreted by proximal soil sensor data. A multi-receiver electromagnetic induction (EMI) sensor measuring soil apparent electrical conductivity (ECa) for six depths of exploration (DOE) ranging from 0–0.25 to 0–1.9 m was used as reconnaissance soil survey tool in combination with selected electrical resistivity tomography (ERT) transects, and ground truth texture data to investigate lateral and vertical changes of soil properties at ten arable fields. The moderate to excellent spatial consistency (R2 0.19–0.82) of ECa patterns and LAI crop marks that indicate a higher water storage capacity as well as the increased correlations between large-offset ECa data and the subsoil clay content and soil profile depth, implies that along this buried paleo-river structure the subsoil is mainly responsible for better crop development in drought periods. Furthermore, observed stagnant water in the subsoil indicates that this paleo-river structure still plays an important role in subsurface hydrology. These insights should be considered and implemented in local hydrological as well as crop models

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database

 Record created 2014-12-12, last modified 2022-09-30


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)