Abstract FZJ-2015-00211

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
$Li_7La_3Zr_2O_{12}$ based all solid state thin film batteries

 ;  ;  ;  ;  ;  ;

2014

Kraftwerk Batterie, AachenAachen, Germany, 27 Apr 2015 - 29 Apr 20152015-04-272015-04-29

Please use a persistent id in citations:

Abstract: Liquid organic electrolytes cause safety problems due to an insufficient thermal and electrochemical stability. One approach to avoid such disadvantages is the replacement of the liquid electrolyte by a solid one. Next to sulfides and phosphates, current research is focused on Li conducting ceramic oxide materials like Li7La3Zr2O12 (LLZ), a promising garnet-structured material with a Li ion conductivity of about 10-4 S/cm. Li ion conductivity can increased by partial substitution of Li or Zr. Since the ionic conductivity is about two orders of magnitude lower compared to liquid electrolytes, thin electrolyte layers are necessary for a low internal resistance of the cell. Complete thin film batteries based on a current collector substrate, a thin cathode, LLZ electrolyte layer and Li or a Li alloy thin film as anode are deposited by physical vapor deposition techniques. The deposition conditions are optimized for each compound and adjusted to the overall system. The resulting thin film batteries are analyzed with regard to electrochemical behavior, structural and morphological properties and element distribution.


Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 123 - Fuel Cells (POF2-123) (POF2-123)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2014
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Abstracts
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2015-01-09, last modified 2024-07-11


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)