Journal Article FZJ-2015-00330

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Interlayer exchange coupling between FeCo and Co ultrathin films through Rh(001) spacers

 ;  ;  ;

2015
APS College Park, Md.

Physical review / B 91(1), 014408 () [10.1103/PhysRevB.91.014408]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Using spin density functional theory (SDFT) calculations, we have studied the magnetic states, including collinear and noncollinear magnetic interlayer coupling, of Fe1−xCox ultrathin films sandwiching Rh(001) layers. We found very large values for the interlayer exchange coupling (IEC) in Co/Rhn/Co or (FeCo)m/Rhn/Co structures as compared to, e.g., Ag or Au spacer layers. The IEC oscillates with the Rh spacer thickness showing a transition between strong antiferromagnetic and ferromagnetic coupling between five- and seven-layer thickness of the Rh film. Moreover, depending on the thickness of the FeCo film, a reorientation transition between in-plane and out-of-plane easy axis was found when spin-orbit coupling is considered in the calculations. This result suggests that, for specific arrangements such as (FeCo)2/Rh5/Co structures, a competition between IEC and magnetic anisotropy of coupled films may result in noncollinear ordering. This possibility was studied with constrained, noncollinear SDFT calculations and the results were mapped onto a classical spin model to explore the richness of spin structures that can arise in these multilayer systems.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)

Appears in the scientific report 2015
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2015-01-12, last modified 2023-04-26


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)