Journal Article FZJ-2015-03281

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
Elsevier Science Amsterdam [u.a.]

Biomaterials 61, 316 - 326 () [10.1016/j.biomaterials.2015.05.030]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Surface topography impacts on cell growth and differentiation, but it is not trivial to generate defined surface structures and to assess the relevance of specific topographic parameters. In this study, we have systematically compared in vitro differentiation of mesenchymal stem cells (MSCs) on a variety of groove/ridge structures. Micro- and nano-patterns were generated in polyimide using reactive ion etching or multi beam laser interference, respectively. These structures affected cell spreading and orientation of human MSCs, which was also reflected in focal adhesions morphology and size. Time-lapse demonstrated directed migration parallel to the nano-patterns. Overall, surface patterns clearly enhanced differentiation of MSCs towards specific lineages: 15 μm ridges increased adipogenic differentiation whereas 2 μm ridges enhanced osteogenic differentiation. Notably, nano-patterns with a periodicity of 650 nm increased differentiation towards both osteogenic and adipogenic lineages. However, in absence of differentiation media surface structures did neither induce differentiation, nor lineage-specific gene expression changes. Furthermore, nanostructures did not affect the YAP/TAZ complex, which is activated by substrate stiffness. Our results provide further insight into how structuring of tailored biomaterials and implant interfaces – e.g. by multi beam laser interference in sub-micrometer scale – do not induce differentiation of MSCs per se, but support their directed differentiation.

Classification:

Contributing Institute(s):
  1. Biomechanik (ICS-7)
Research Program(s):
  1. 552 - Engineering Cell Function (POF3-552) (POF3-552)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-2
Workflowsammlungen > Öffentliche Einträge
ICS > ICS-7
Publikationsdatenbank

 Datensatz erzeugt am 2015-06-01, letzte Änderung am 2021-01-29


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)