Home > Publications database > Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation |
Journal Article | FZJ-2015-03465 |
; ; ; ;
2013
Elsevier
Amsterdam [u.a.]
This record in other databases:
Please use a persistent id in citations: doi:10.1016/j.coal.2013.04.003
Abstract: Transmission micro-FTIR spectroscopy has been conducted to elucidate the macromolecular structure of well-preserved fossil palynomorphs including prasinophycean algae, megaspores, chitinozoans, and scolecodonts. Plant and arthropod cuticles which may be present in palynological residues have also been investigated. Important differences are noted among these palynomorph groups regarding the intensities of CHx, Cdouble bond; length as m-dashO and aromatic Cdouble bond; length as m-dashC absorptions. Tasmanites, Leiosphaeridia, and plant cuticles are characterized by stronger aliphatic CHx stretching (3000–2800 cm− 1), strong CH3 (1460–1450 cm− 1), and intense Cdouble bond; length as m-dashO group (1710–1700 cm− 1) absorptions. Aromatic Cdouble bond; length as m-dashC stretching (1610–1560 cm− 1) absorptions are less intense and aromatic CH out of plane (900–750 cm− 1) absorptions are absent. In contrast, chitinozoans, scolecodonts, and arthropod cuticles show intense aromatic Cdouble bond; length as m-dashC stretching (1620–1560 cm− 1) and aromatic CH out of plane (900–750 cm− 1) absorptions. Aliphatic CHx stretching (3000–2800 cm− 1) and Cdouble bond; length as m-dashO group (1710–1700 cm− 1) absorptions are less intense. Megaspores are characterized by stronger aliphatic CHx stretching (3000–2800 cm− 1), strong CH3 (1460–1450 cm− 1), and moderate aromatic Cdouble bond; length as m-dashC stretching (1610–1560 cm− 1) and Cdouble bond; length as m-dashO group (1710–1700 cm− 1) absorptions. The CH2/CH3 intensity ratio has been used to assess the relative chain length and degree of branching. The aliphatic components in Tasmanites, Leiosphaeridia, and plant cuticles are longest chained and least branched whereas those in chitinozoans, scolecodonts, and arthropod cuticles are shortest chained and most branched. Megaspores show intermediate CH2/CH3 ratio. The present study demonstrates that palynomorphs differ in functional group chemistry and this spectroscopic technique can be useful to assign biological affinity of enigmatic palynomorphs. Furthermore, micro-FTIR spectroscopy provides insights into the hydrocarbon generating potential of different fossil palynomorph groups.
![]() |
The record appears in these collections: |