| Home > Publications database > Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China |
| Journal Article | PreJuSER-2084 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2009
Union
Washington, DC
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/20400 doi:10.1029/2008JD010884
Abstract: This study was part of the international field measurement Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006). We investigated a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN). During the 1-month observation, particle nucleation followed by significant particle growth on a regional scale was observed frequently (similar to 30%), and we chose 23 August 2006 as a representative case study. Secondary aerosol mass was produced continuously, with sulfate, ammonium, and organics as major components. The aerosol mass growth rate was on average 19 mu g m(-3) h(-1) during the late hours of the day. This growth rate was observed several times during the 1-month intensive measurements. The nucleation mode grew very quickly into the size range of CCN, and the CCN size distribution was dominated by the growing nucleation mode ( up to 80% of the total CCN number concentration) and not as usual by the accumulation mode. At water vapor supersaturations of 0.07-0.86%, the CCN number concentrations reached maximum values of 4000-19,000 cm(-3) only 6-14 h after the nucleation event. During particle formation and growth, the effective hygroscopicity parameter kappa increased from about 0.1-0.3 to 0.35-0.5 for particles with diameters of 40-90 nm, but it remained nearly constant at similar to 0.45 for particles with diameters of similar to 190 nm. This result is consistent with aerosol chemical composition data, showing a pronounced increase of sulfate.
Keyword(s): J
|
The record appears in these collections: |