Journal Article FZJ-2015-05640

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Functional properties of La$_{0.99}$X$_{0.01}$Nb$_{0.99}$Al$_{0.01}$O$_{4−δ}$ and La$_{0.99}$X$_{0.01}$Nb$_{0.99}$Ti$_{0.01}$O$_{4−δ}$ proton conductors where X is an alkaline earth cation

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
Elsevier Science Amsterdam [u.a.]

Journal of the European Ceramic Society 35(4), 1239 - 1253 () [10.1016/j.jeurceramsoc.2014.11.009]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Lanthanum niobates with general formulas of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ (X = Mg, Ca, Sr or Ba) were synthesized via the conventional solid state reaction. Specimens with relative density above 96% were produced after sintering. Structural and phase composition studies revealed predominant monoclinic Fergusonite structure for the majority of samples. SEM and TEM studies elucidated the effect of the used dopant combinations on grain growth, micro-crack formation and secondary phase formation. Results from microstructural study were correlated to the grain interior and grain boundary conductivities for selected samples (La0.99Sr0.01Nb0.99Al0.01O4−δ and La0.99Sr0.01Nb0.99Ti0.01O4−δ). The majority of co-doped niobates exhibited appreciable protonic conductivity under humid atmospheres at intermediate temperatures. Sr- or Ca-doped compounds displayed the highest total conductivities with values for LSNA equal to 6 × 10−4 S/cm and 3 × 10−4 S/cm in wet air and in wet 4% H2–Ar (900 °C), respectively. Additionally, thermal expansion was studied to complete functional characterization of co-doped LaNbO4.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2015
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-1
Publications database

 Record created 2015-09-14, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)