000256089 001__ 256089 000256089 005__ 20210129220619.0 000256089 0247_ $$2doi$$a10.1088/0957-4484/26/25/255302 000256089 0247_ $$2ISSN$$a0957-4484 000256089 0247_ $$2ISSN$$a1361-6528 000256089 0247_ $$2WOS$$aWOS:000356137400008 000256089 037__ $$aFZJ-2015-06109 000256089 041__ $$aEnglish 000256089 082__ $$a530 000256089 1001_ $$0P:(DE-HGF)0$$aDais, C.$$b0$$eCorresponding author 000256089 245__ $$aSiGe quantum dot crystals with periods down to 35 nm 000256089 260__ $$aBristol$$bIOP Publ.$$c2015 000256089 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444652297_31782 000256089 3367_ $$2DataCite$$aOutput Types/Journal article 000256089 3367_ $$00$$2EndNote$$aJournal Article 000256089 3367_ $$2BibTeX$$aARTICLE 000256089 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000256089 3367_ $$2DRIVER$$aarticle 000256089 520__ $$aBy combining extreme ultraviolet interference lithography with Si/Ge molecular beam epitaxy, densely packed quantum dot (QD) arrays with lateral periodicities down to 35 nm are realized. The QD arrays are featured by perfect alignment and remarkably narrow size distribution. Also, such small periodicities allow the creation of three-dimensional QD crystals by vertical stacking of Si/Ge layers using very thin Si spacer layers. Simulations show that the distances between adjacent QDs are small enough for coupling of the electron states in lateral as well as vertical directions. 000256089 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000256089 588__ $$aDataset connected to CrossRef 000256089 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b1$$ufzj 000256089 7001_ $$0P:(DE-HGF)0$$aFromherz, T.$$b2 000256089 7001_ $$0P:(DE-HGF)0$$aMüller, E.$$b3 000256089 7001_ $$0P:(DE-HGF)0$$aSolak, H. H.$$b4 000256089 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b5$$ufzj 000256089 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/26/25/255302$$gVol. 26, no. 25, p. 255302 -$$n25$$p255302 -$$tNanotechnology$$v26$$x1361-6528$$y2015 000256089 909CO $$ooai:juser.fz-juelich.de:256089$$pVDB 000256089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000256089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000256089 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000256089 9141_ $$y2015 000256089 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000256089 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000256089 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2014 000256089 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000256089 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000256089 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000256089 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000256089 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000256089 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000256089 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000256089 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000256089 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000256089 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000256089 920__ $$lyes 000256089 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000256089 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000256089 980__ $$ajournal 000256089 980__ $$aVDB 000256089 980__ $$aI:(DE-Juel1)PGI-9-20110106 000256089 980__ $$aI:(DE-82)080009_20140620 000256089 980__ $$aUNRESTRICTED