000256089 001__ 256089
000256089 005__ 20210129220619.0
000256089 0247_ $$2doi$$a10.1088/0957-4484/26/25/255302
000256089 0247_ $$2ISSN$$a0957-4484
000256089 0247_ $$2ISSN$$a1361-6528
000256089 0247_ $$2WOS$$aWOS:000356137400008
000256089 037__ $$aFZJ-2015-06109
000256089 041__ $$aEnglish
000256089 082__ $$a530
000256089 1001_ $$0P:(DE-HGF)0$$aDais, C.$$b0$$eCorresponding author
000256089 245__ $$aSiGe quantum dot crystals with periods down to 35 nm
000256089 260__ $$aBristol$$bIOP Publ.$$c2015
000256089 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444652297_31782
000256089 3367_ $$2DataCite$$aOutput Types/Journal article
000256089 3367_ $$00$$2EndNote$$aJournal Article
000256089 3367_ $$2BibTeX$$aARTICLE
000256089 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256089 3367_ $$2DRIVER$$aarticle
000256089 520__ $$aBy combining extreme ultraviolet interference lithography with Si/Ge molecular beam epitaxy, densely packed quantum dot (QD) arrays with lateral periodicities down to 35 nm are realized. The QD arrays are featured by perfect alignment and remarkably narrow size distribution. Also, such small periodicities allow the creation of three-dimensional QD crystals by vertical stacking of Si/Ge layers using very thin Si spacer layers. Simulations show that the distances between adjacent QDs are small enough for coupling of the electron states in lateral as well as vertical directions.
000256089 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000256089 588__ $$aDataset connected to CrossRef
000256089 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b1$$ufzj
000256089 7001_ $$0P:(DE-HGF)0$$aFromherz, T.$$b2
000256089 7001_ $$0P:(DE-HGF)0$$aMüller, E.$$b3
000256089 7001_ $$0P:(DE-HGF)0$$aSolak, H. H.$$b4
000256089 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b5$$ufzj
000256089 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/26/25/255302$$gVol. 26, no. 25, p. 255302 -$$n25$$p255302 -$$tNanotechnology$$v26$$x1361-6528$$y2015
000256089 909CO $$ooai:juser.fz-juelich.de:256089$$pVDB
000256089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256089 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000256089 9141_ $$y2015
000256089 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000256089 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000256089 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2014
000256089 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256089 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256089 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256089 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256089 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256089 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256089 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256089 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256089 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000256089 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256089 920__ $$lyes
000256089 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000256089 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000256089 980__ $$ajournal
000256089 980__ $$aVDB
000256089 980__ $$aI:(DE-Juel1)PGI-9-20110106
000256089 980__ $$aI:(DE-82)080009_20140620
000256089 980__ $$aUNRESTRICTED