Journal Article FZJ-2015-06974

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Ab Initio Study of Strain Effects on the Quasiparticle Bands and Effective Masses in Silicon

 ;

2015
Hindawi Publ. Corp. New York, NY {[u.a.]

Advances in condensed matter physics 2015, 453125 () [10.1155/2015/453125]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Using ab initio computational methods, we study the structural and electronic properties of strained silicon, which has emerged as a promising technology to improve the performance of silicon-based metal-oxide-semiconductor field-effect transistors. In particular, higher electron mobilities are observed in n-doped samples with monoclinic strain along the [110] direction, and experimental evidence relates this to changes in the effective mass as well as the scattering rates. To assess the relative importance of these two factors, we combine density-functional theory in the local-density approximation with the GW approximation for the electronic self-energy and investigate the effect of uniaxial and biaxial strains along the [110] direction on the structural and electronic properties of Si. Longitudinal and transverse components of the electron effective mass as a function of the strain are derived from fits to the quasiparticle band structure and a diagonalization of the full effective-mass tensor. The changes in the effective masses and the energy splitting of the conduction-band valleys for uniaxial and biaxial strains as well as their impact on the electron mobility are analyzed. The self-energy corrections within GW lead to band gaps in excellent agreement with experimental measurements and slightly larger effective masses than in the local-density approximation.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)

Appears in the scientific report 2015
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2015-12-01, last modified 2021-01-29