Journal Article FZJ-2015-07691

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes

 ;  ;  ;

2015
American Institute of Physics Melville, NY

The journal of chemical physics 143(24), 243145 - () [10.1063/1.4937171]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Deterministic lateral displacement (DLD) devices have great potential for the separation and sorting of various suspended particles based on their size, shape, deformability, and other intrinsic properties. Currently, the basic idea for the separation mechanism is that the structure and geometry of DLDs uniquely determine the flow field, which in turn defines a critical particle size and the particle lateral displacement within a device. We employ numerical simulations using coarse-grained mesoscopic methods and two-dimensional models to elucidate the dynamics of both rigid spherical particles and deformable red blood cells (RBCs) in different DLD geometries. Several shapes of pillars, including circular, diamond, square, and triangular structures, and a few particle sizes are considered. The simulation results show that a critical particle size can be well defined for rigid spherical particles and depends on the details of the DLD structure and the corresponding flow field within the device. However, non-isotropic and deformable particles such as RBCs exhibit much more complex dynamics within a DLD device, which cannot properly be described by a single parameter such as the critical size. The dynamics and deformation of soft particles within a DLD device become also important, indicating that not only size sorting, but additional sorting targets (e.g., shape, deformability, internal viscosity) are possible.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (IAS-2)
  2. Theorie der Weichen Materie und Biophysik (ICS-2)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)

Appears in the scientific report 2015
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
ICS > ICS-2
Publications database
Open Access

 Record created 2015-12-16, last modified 2024-06-10


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)