Journal Article FZJ-2015-07787

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Solid particle erosion of standard and advanced thermal barrier coatings

 ;  ;  ;  ;  ;

2016
Elsevier Science Amsterdam [u.a.]

Wear 348-349, 43-51 () [10.1016/j.wear.2015.10.021]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The state-of-the-art of the thermal barrier coatings (TBCs), used to protect hot path components from combustion gases, is represented by yttria (partially) stabilized zirconia (YPSZ). Combustion and cooling technology improvements in combination with higher turbine inlet temperature imply that the standard YSZ approaches have certain limitations due to sintering and phase transformations at elevated temperatures. Moreover under high thermal loading early failure of the coating occurs due to attack by calcium–magnesium–alumino-silicate (CMAS) deposits inducing cracking, spallation and delamination of the coating. Alternative refractory materials development, with higher performances than YSZ, was the objective of the UE project H2IGCC: within this project the erosion resistance of porous, dense segmented YPSZ TBCs and innovative TBCs, featured with a bilayer structure, has been tested at impingement angles of 30° and 90°, representative for particle impingement on trailing and leading edges of gas turbine blades and vanes, respectively. Alumina powders with grain size representative of sand and fly ashes, respectively were chosen as the erodent.A better erosion resistance of dense segmented TBCs regardless of experimental conditions was observed, whereas one of the new bilayer coating, due to its peculiar micro-structure, showed a very interesting erosion resistance, at least with fine erosion particles.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-1
Publikationsdatenbank

 Datensatz erzeugt am 2015-12-18, letzte Änderung am 2024-07-11


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)