Journal Article FZJ-2016-00537

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Spin resonance without spin splitting

 ;  ;  ;  ;

2015
APS College Park, Md.

Physical review / B 91(19), 195404 () [10.1103/PhysRevB.91.195404]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We predict that a single-level quantum dot without discernible splitting of its spin states develops a spin-precession resonance in charge transport when embedded into a spin valve. The resonance occurs in the generic situation of Coulomb blockaded transport with ferromagnetic leads whose polarizations deviate from perfect antiparallel alignment. The resonance appears when electrically tuning the interaction-induced exchange field perpendicular to one of the polarizations—a simple condition relying on vectors in contrast to usual resonance conditions associated with energy splittings. The spin resonance can be detected by stationary dI/dV spectroscopy and by oscillations in the time-averaged current using a gate-pulsing scheme. The generic noncollinearity of the ferromagnets and junction asymmetry allow for an all-electric determination of the spin-injection asymmetry, the anisotropy of spin relaxation, and the magnitude of the exchange field. We also investigate the impact of a nearby superconductor on the resonance position. Our simplistic model turns out to be generic for a broad class of coherent few-level quantum systems.

Classification:

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 141 - Controlling Electron Charge-Based Phenomena (POF3-141) (POF3-141)

Appears in the scientific report 2015
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2016-01-15, last modified 2023-04-26