Journal Article FZJ-2016-00824

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A chemists view: Metal oxides with adaptive structures for thermoelectric applications

 ;  ;  ;  ;  ;  ;

2016
Wiley-VCH Weinheim

Physica status solidi / A 213(3), 808–823 () [10.1002/pssa.201532702]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Thermoelectric devices can help to tackle future challenges in the energy sector through the conversion of waste heat directly into usable electric energy. For a wide applicability low-cost materials with reasonable thermoelectric performances and cost-efficient preparation techniques are required. In this context metal oxides are an interesting class of materials because of their inherent high-temperature stability and relative high sustainability. Their thermoelectric performance, however, needs to be improved for wide application. Compounds with adaptive structures are a very interesting class of materials. A slight reduction of early transition metal oxides generates electrons as charge carriers and crystallographic shear planes as structure motif. The crystallographic shear planes lead to a reduction of intrinsic thermal conductivity. At the same time, the electronic transport properties can be tuned by the degree of reduction. So far only a few transition metal oxides with adaptive structures have been investigated with respect to their thermoelectric properties, leaving much room for improvement. This review gives an overview of thermoelectric oxides, highlights the structural aspects of the crystallographic shear planes and the resulting thermoelectric properties.

Classification:

Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)
  2. 524 - Controlling Collective States (POF3-524) (POF3-524)
  3. 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) (POF3-621)
  4. 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) (POF3-621)
  5. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database

 Record created 2016-01-21, last modified 2025-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)