Journal Article FZJ-2016-01161

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
AMS Boston, Mass.

Journal of hydrometeorology 16(3), 1109 - 1134 () [10.1175/JHM-D-14-0052.1]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2015
Database coverage:
OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2016-01-27, last modified 2021-01-29