Journal Article FZJ-2016-01790

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Planar and 3D deposition of Li4Ti5O12 thin film electrodes by MOCVD

 ;  ;  ;  ;

2016
Elsevier Science Amsterdam [u.a.]

Solid state ionics 287, 83 - 88 () [10.1016/j.ssi.2016.02.004]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Li4Ti5O12 is well known to be a safe and efficient anode material for Li-ion batteries. A metal–organic chemical vapor deposition process has been developed for the synthesis of Li4Ti5O12 thin film anodes on planar and 3D substrates. The influences of various deposition parameters, including precursor flow rates and post-annealing temperatures, have been investigated by material and electrochemical analyses. Li4Ti5O12 thin films deposited at the optimized process parameters showed a high crystallinity and high electrochemical activity. A reversible storage capacity of 151 mAh/g was achieved at a current of 0.5 C, corresponding to 86.3% of the theoretical specific capacity of Li4Ti5O12. Up to almost 600 cycles, the electrodes showed no significant capacity loss. Furthermore, the deposited thin film anodes also showed excellent rate performance. Compared to the storage capacity at 0.5 C, 93% of the capacity was maintained at 10 C. Thin films were also deposited on highly structured substrates to investigate the uniformity and electrochemical performance. With the same footprint area, the 3D Li4Ti5O12 film anode showed a 2.5 times higher storage capacity than planar electrode.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2016
Database coverage:
Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database

 Record created 2016-03-02, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)