Journal Article FZJ-2016-01978

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Aging of atmospherically plasma sprayed chromium evaporation barriers

 ;  ;  ;  ;  ;  ;  ;

2016
Elsevier Science Amsterdam [u.a.]

Surface and coatings technology 291, 115 - 122 () [10.1016/j.surfcoat.2016.02.005]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Chromium evaporation barriers are frequently used in solid oxide fuel cells to protect the porous cathode from chromium poisoning. Volatile chromium species are generated at the operation temperature of about 600–900 °C in a humid atmosphere for chromia scale forming steels as interconnect materials. In order to reduce this effect, barrier coatings are applied, often by atmospheric plasma spraying. However, also in these coatings microstructural changes as densification and in parallel formation of large pores have been observed. In order to clarify these mechanisms plasma sprayed Mn1.0 Co1.9Fe0.1O4 (“MCF”) are deposited on ferritic steels and furthermore coated with a perovskite based contact layer as used in stack build-up. These coatings are annealed in air up to 1000 h and the microstructural changes and bending of the samples are studied. The results show increasing bending with increasing aging time. High temperature curvature measurements indicate that the amount of bending is not significantly dependent on temperature. As an explanation the creep deformation of the substrate/coating system at high temperatures due to compressive stress levels in the coating is given. The origin of the stress is related to phase changes in combination with the oxidation of the coatings. In addition, interdiffusion and densification processes are discussed.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2016-03-16, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)