000030850 001__ 30850
000030850 005__ 20200423203529.0
000030850 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org
000030850 0247_ $$2DOI$$a10.1103/PhysRevLett.91.056103
000030850 0247_ $$2WOS$$aWOS:000184510600027
000030850 0247_ $$2Handle$$a2128/2151
000030850 037__ $$aPreJuSER-30850
000030850 041__ $$aeng
000030850 082__ $$a550
000030850 084__ $$2WoS$$aPhysics, Multidisciplinary
000030850 1001_ $$0P:(DE-HGF)0$$aBusse, C.$$b0
000030850 245__ $$aStacking-Fault Nucleation on Ir(111)
000030850 260__ $$aCollege Park, Md.$$bAPS$$c2003
000030850 300__ $$a0561031 - 0561034
000030850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000030850 3367_ $$2DataCite$$aOutput Types/Journal article
000030850 3367_ $$00$$2EndNote$$aJournal Article
000030850 3367_ $$2BibTeX$$aARTICLE
000030850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000030850 3367_ $$2DRIVER$$aarticle
000030850 440_0 $$04925$$aPhysical Review Letters$$v91$$x0031-9007
000030850 500__ $$aRecord converted from VDB: 12.11.2012
000030850 520__ $$aVariable temperature scanning tunneling microscopy experiments reveal that in Ir(111) homoepitaxy islands nucleate and grow both in the regular fcc stacking and in the faulted hcp stacking. Analysis of this effect in dependence on deposition temperature leads to an atomistic model of stacking-fault formation: The large, metastable stacking-fault islands grow by sufficiently fast addition of adatoms to small mobile adatom clusters which occupy in thermal equilibrium the hcp sites with a significant probability. Using parameters derived independently by field ion microscopy, the model accurately describes the results for Ir(111) and is expected to be valid also for other surfaces.
000030850 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000030850 588__ $$aDataset connected to Web of Science
000030850 650_7 $$2WoSType$$aJ
000030850 7001_ $$0P:(DE-HGF)0$$aPolop, C.$$b1
000030850 7001_ $$0P:(DE-HGF)0$$aMüller, M.$$b2
000030850 7001_ $$0P:(DE-HGF)0$$aAlbe, K.$$b3
000030850 7001_ $$0P:(DE-Juel1)VDB23435$$aLinke, U.$$b4$$uFZJ
000030850 7001_ $$0P:(DE-HGF)0$$aMichely, T.$$b5
000030850 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.91.056103$$gVol. 91, p. 0561031 - 0561034$$p0561031 - 0561034$$q91<0561031 - 0561034$$tPhysical review letters$$v91$$x0031-9007$$y2003
000030850 8567_ $$uhttp://hdl.handle.net/2128/2151$$uhttp://dx.doi.org/10.1103/PhysRevLett.91.056103
000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.pdf$$yOpenAccess
000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000030850 909CO $$ooai:juser.fz-juelich.de:30850$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000030850 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000030850 9141_ $$y2003
000030850 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000030850 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000030850 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000030850 970__ $$aVDB:(DE-Juel1)29432
000030850 980__ $$aVDB
000030850 980__ $$aJUWEL
000030850 980__ $$aConvertedRecord
000030850 980__ $$ajournal
000030850 980__ $$aI:(DE-Juel1)PGI-3-20110106
000030850 980__ $$aUNRESTRICTED
000030850 980__ $$aFullTexts
000030850 9801_ $$aFullTexts
000030850 981__ $$aI:(DE-Juel1)PGI-3-20110106