000030850 001__ 30850 000030850 005__ 20200423203529.0 000030850 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org 000030850 0247_ $$2DOI$$a10.1103/PhysRevLett.91.056103 000030850 0247_ $$2WOS$$aWOS:000184510600027 000030850 0247_ $$2Handle$$a2128/2151 000030850 037__ $$aPreJuSER-30850 000030850 041__ $$aeng 000030850 082__ $$a550 000030850 084__ $$2WoS$$aPhysics, Multidisciplinary 000030850 1001_ $$0P:(DE-HGF)0$$aBusse, C.$$b0 000030850 245__ $$aStacking-Fault Nucleation on Ir(111) 000030850 260__ $$aCollege Park, Md.$$bAPS$$c2003 000030850 300__ $$a0561031 - 0561034 000030850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000030850 3367_ $$2DataCite$$aOutput Types/Journal article 000030850 3367_ $$00$$2EndNote$$aJournal Article 000030850 3367_ $$2BibTeX$$aARTICLE 000030850 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000030850 3367_ $$2DRIVER$$aarticle 000030850 440_0 $$04925$$aPhysical Review Letters$$v91$$x0031-9007 000030850 500__ $$aRecord converted from VDB: 12.11.2012 000030850 520__ $$aVariable temperature scanning tunneling microscopy experiments reveal that in Ir(111) homoepitaxy islands nucleate and grow both in the regular fcc stacking and in the faulted hcp stacking. Analysis of this effect in dependence on deposition temperature leads to an atomistic model of stacking-fault formation: The large, metastable stacking-fault islands grow by sufficiently fast addition of adatoms to small mobile adatom clusters which occupy in thermal equilibrium the hcp sites with a significant probability. Using parameters derived independently by field ion microscopy, the model accurately describes the results for Ir(111) and is expected to be valid also for other surfaces. 000030850 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000030850 588__ $$aDataset connected to Web of Science 000030850 650_7 $$2WoSType$$aJ 000030850 7001_ $$0P:(DE-HGF)0$$aPolop, C.$$b1 000030850 7001_ $$0P:(DE-HGF)0$$aMüller, M.$$b2 000030850 7001_ $$0P:(DE-HGF)0$$aAlbe, K.$$b3 000030850 7001_ $$0P:(DE-Juel1)VDB23435$$aLinke, U.$$b4$$uFZJ 000030850 7001_ $$0P:(DE-HGF)0$$aMichely, T.$$b5 000030850 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.91.056103$$gVol. 91, p. 0561031 - 0561034$$p0561031 - 0561034$$q91<0561031 - 0561034$$tPhysical review letters$$v91$$x0031-9007$$y2003 000030850 8567_ $$uhttp://hdl.handle.net/2128/2151$$uhttp://dx.doi.org/10.1103/PhysRevLett.91.056103 000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.pdf$$yOpenAccess 000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000030850 8564_ $$uhttps://juser.fz-juelich.de/record/30850/files/29432.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000030850 909CO $$ooai:juser.fz-juelich.de:30850$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000030850 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000030850 9141_ $$y2003 000030850 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000030850 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000030850 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0 000030850 970__ $$aVDB:(DE-Juel1)29432 000030850 980__ $$aVDB 000030850 980__ $$aJUWEL 000030850 980__ $$aConvertedRecord 000030850 980__ $$ajournal 000030850 980__ $$aI:(DE-Juel1)PGI-3-20110106 000030850 980__ $$aUNRESTRICTED 000030850 980__ $$aFullTexts 000030850 9801_ $$aFullTexts 000030850 981__ $$aI:(DE-Juel1)PGI-3-20110106