Journal Article PreJuSER-30959

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Comparison of Sorption Domains in Molecular Weight Fractions of a Soil Humic Acid Using Solid-State 19F NMR

 ;  ;  ;  ;

2003
American Chemical Society Columbus, Ohio

Environmental Science & Technology 37, 2855 - 2860 () [10.1021/es0206386]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Humic acid was fractionated into eight different molecular size components using ultrafiltration. Solid-state CPMAS C-13 NMR demonstrated that fractions larger than 100 000 Daltons were primarily aliphatic in character,while fractions smaller than 30 000 Daltons were predominantly aromatic in character. Solid-state F-19 NMR examination of the sorptive uptake of hexafluorobenzene (HFB) by HA and each of the fractions gave spectroscopic evidence for the existence of at least three sorption sites in the smaller molecular size fractions, while two predominant sorption sites could be established in the larger molecular size fractions. Sorbed HFB displayed higher mobility in the smaller, more aromatic fractions while HFB in the larger, more aliphatic fractions displayed lower mobility. The relative mobilities of HFB in each sorption domain suggest that the rigid domain may be composed of aliphatic carbon rather than aromatic carbon moieties. In larger size fractions, this domain may be the result of rigid, glassy regions composed of aliphatic molecules or side chains.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Agrosphäre (ICG-IV)
Research Program(s):
  1. Chemie und Dynamik der Geo-Biosphäre (U01)

Appears in the scientific report 2003
Database coverage:
JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-10



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)