Journal Article PreJuSER-38398

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Solute is imported to elongating root cells of barley as a pressure driven flow of solution

 ;  ;  ;  ;

2004
CSIRO Publ. Collingwood, Victoria

Functional plant biology 31, 391 - 397 () [10.1071/FP03231]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: This work relates solute import to elongating root cells in barley to the water relations of the symplastic pathway under conditions of varied plant K+ status. K+ is a major constituent of phloem sieve element (SE) sap, and as an osmoticum, it is believed to have a role in maintaining SE hydrostatic pressure and thus sap flow from source to sink tissue. The hypothesis that the solute import to elongating root cells is linked to pressure driven flow from the sieve tube is examined.Plants were grown in solutions containing either 0.05 m M (low K) or 2.05 m M (high K) K+ concentration. Solute import to the root elongation zone was estimated from biomass accumulation over time accounting for respiration and root elongation rate. SE sap K+ concentration was measured using X-ray microanalyses and osmotic pressure by picolitre osmometry. SE hydrostatic pressure was measured directly with a pressure probe glued onto an excised aphid stylet. Elongating root cell hydrostatic pressure was measured using a cell pressure probe.The low-K plants had lower SE K+ concentration and SE hydrostatic pressure compared to the high-K plants, but the elongating root cell hydrostatic pressure was similar in both treatments, thus the pressure difference between the SE and elongating root cells was less in the low-K plants compared to the high-K plants.The solute import rate to elongating root cells was lower in the low K plants and the reduction could be accounted for as a pressure driven solute flux, with a reduction both in the pressure difference between root sieve elements and elongating cells, and in the sap concentration.

Keyword(s): J ; aphid stylectomy (auto) ; C-11 (auto) ; Hordeum vulgare (auto) ; hydrostatic pressure (auto) ; phloem (auto) ; solute transport (auto) ; symplastic pathway (auto)

Classification:

Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Phytosphäre (ICG-III)
Research Program(s):
  1. Chemie und Dynamik der Geo-Biosphäre (U01)

Appears in the scientific report 2004
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database

 Record created 2012-11-13, last modified 2018-02-10



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)