Journal Article PreJuSER-42723

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Organic aerosol formation via sulphate cluster activation

 ;  ;  ;  ;

2004
Union Washington, DC

Journal of Geophysical Research 109, D04205 () [10.1029/2003JD003961]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: [ 1] The formation of aerosols, and subsequent cloud condensation nuclei, remains one of the least understood atmospheric processes upon which global climate change critically depends. Under atmospheric conditions, the process of homogeneous nucleation (formation of stable clusters -1 nm in size), and their subsequent growth into new particles (>3 nm), determines the aerosol and cloud nuclei population, yet, hitherto, no theory has elucidated the new particle formation phenomenon in detail. In this study, we present a new theory which provides a mechanistic explanation for new particle formation via activation of stable inorganic clusters by organic vapors. The new nano-particle activation theory is analogous to Kohler theory which describes cloud formation in a supersaturated water vapor field but differs in that it describes the activation of inorganic stable nano-clusters into aerosol particles in a supersaturated organic vapor which initiates spontaneous and rapid growth of clusters. Inclusion of the new theory into aerosol formation models predicts that increases in organic vapor densities lead to even greater increases in particle production, which, in turn, will influence the global radiative cooling effect of atmospheric aerosols.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Troposphäre (ICG-II)
Research Program(s):
  1. Chemie und Dynamik der Geo-Biosphäre (U01)

Appears in the scientific report 2004
Database coverage:
OpenAccess ; JCR ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-3
Workflow collections > Public records
IEK > IEK-8
Publications database
Open Access

 Record created 2012-11-13, last modified 2024-07-12