000046888 001__ 46888
000046888 005__ 20180210130517.0
000046888 0247_ $$2DOI$$a10.1016/j.electacta.2005.08.015
000046888 0247_ $$2WOS$$aWOS:000236478800006
000046888 037__ $$aPreJuSER-46888
000046888 041__ $$aeng
000046888 082__ $$a540
000046888 084__ $$2WoS$$aElectrochemistry
000046888 1001_ $$0P:(DE-Juel1)VDB60931$$aMunoz, A. G.$$b0$$uFZJ
000046888 245__ $$aElectrodeposition of Co on Oxide Modified p-Si Surfaces
000046888 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2006
000046888 300__ $$a2836 - 2844
000046888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046888 3367_ $$2DataCite$$aOutput Types/Journal article
000046888 3367_ $$00$$2EndNote$$aJournal Article
000046888 3367_ $$2BibTeX$$aARTICLE
000046888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046888 3367_ $$2DRIVER$$aarticle
000046888 440_0 $$01776$$aElectrochimica Acta$$v51$$x0013-4686
000046888 500__ $$aRecord converted from VDB: 12.11.2012
000046888 520__ $$aThe influence of the first stages of anodic oxidation of p-Si on the mechanism of Co deposition was studied by means of electrochemical techniques and AFM. The surface transformation during the formation of a thin oxide layer on hydrogen-terminated Si was followed by capacitance measurements and related to changes of the electrodeposition mechanism. It was observed that the reduction of Co2+ on oxide free p-Si occurs at the negative side of the flat band potential involving the discharge of photogenerated electrons at the conduction band edge and/or surface state levels. The fort-nation of an oxide film of d(ox) < 2 nm introduces an energy barrier that increases the overpotential for electrodeposition. The morphology of deposits, on the other hand, changes from layer like to grain like after surface oxidation, indicating a substantial modification of the nature and density of nucleation sites. The number density of deposited clusters on an oxidized surface showed a proportionality with the field strength in the oxide, indicating the presence of a certain high-field assisted mechanism in the generation of active sites. (c) 2005 Elsevier Ltd. All rights reserved.
000046888 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000046888 588__ $$aDataset connected to Web of Science
000046888 650_7 $$2WoSType$$aJ
000046888 65320 $$2Author$$ap-Si
000046888 65320 $$2Author$$aelectrodeposition
000046888 65320 $$2Author$$aCo
000046888 65320 $$2Author$$aphotoelectrodes
000046888 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b1$$uFZJ
000046888 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2005.08.015$$gVol. 51, p. 2836 - 2844$$p2836 - 2844$$q51<2836 - 2844$$tElectrochimica acta$$v51$$x0013-4686$$y2006
000046888 8567_ $$uhttp://dx.doi.org/10.1016/j.electacta.2005.08.015
000046888 909CO $$ooai:juser.fz-juelich.de:46888$$pVDB
000046888 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000046888 9141_ $$y2006
000046888 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046888 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000046888 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000046888 970__ $$aVDB:(DE-Juel1)73882
000046888 980__ $$aVDB
000046888 980__ $$aConvertedRecord
000046888 980__ $$ajournal
000046888 980__ $$aI:(DE-Juel1)PGI-3-20110106
000046888 980__ $$aI:(DE-Juel1)VDB381
000046888 980__ $$aUNRESTRICTED
000046888 981__ $$aI:(DE-Juel1)PGI-3-20110106
000046888 981__ $$aI:(DE-Juel1)VDB381