000046888 001__ 46888 000046888 005__ 20180210130517.0 000046888 0247_ $$2DOI$$a10.1016/j.electacta.2005.08.015 000046888 0247_ $$2WOS$$aWOS:000236478800006 000046888 037__ $$aPreJuSER-46888 000046888 041__ $$aeng 000046888 082__ $$a540 000046888 084__ $$2WoS$$aElectrochemistry 000046888 1001_ $$0P:(DE-Juel1)VDB60931$$aMunoz, A. G.$$b0$$uFZJ 000046888 245__ $$aElectrodeposition of Co on Oxide Modified p-Si Surfaces 000046888 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2006 000046888 300__ $$a2836 - 2844 000046888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000046888 3367_ $$2DataCite$$aOutput Types/Journal article 000046888 3367_ $$00$$2EndNote$$aJournal Article 000046888 3367_ $$2BibTeX$$aARTICLE 000046888 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000046888 3367_ $$2DRIVER$$aarticle 000046888 440_0 $$01776$$aElectrochimica Acta$$v51$$x0013-4686 000046888 500__ $$aRecord converted from VDB: 12.11.2012 000046888 520__ $$aThe influence of the first stages of anodic oxidation of p-Si on the mechanism of Co deposition was studied by means of electrochemical techniques and AFM. The surface transformation during the formation of a thin oxide layer on hydrogen-terminated Si was followed by capacitance measurements and related to changes of the electrodeposition mechanism. It was observed that the reduction of Co2+ on oxide free p-Si occurs at the negative side of the flat band potential involving the discharge of photogenerated electrons at the conduction band edge and/or surface state levels. The fort-nation of an oxide film of d(ox) < 2 nm introduces an energy barrier that increases the overpotential for electrodeposition. The morphology of deposits, on the other hand, changes from layer like to grain like after surface oxidation, indicating a substantial modification of the nature and density of nucleation sites. The number density of deposited clusters on an oxidized surface showed a proportionality with the field strength in the oxide, indicating the presence of a certain high-field assisted mechanism in the generation of active sites. (c) 2005 Elsevier Ltd. All rights reserved. 000046888 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000046888 588__ $$aDataset connected to Web of Science 000046888 650_7 $$2WoSType$$aJ 000046888 65320 $$2Author$$ap-Si 000046888 65320 $$2Author$$aelectrodeposition 000046888 65320 $$2Author$$aCo 000046888 65320 $$2Author$$aphotoelectrodes 000046888 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b1$$uFZJ 000046888 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2005.08.015$$gVol. 51, p. 2836 - 2844$$p2836 - 2844$$q51<2836 - 2844$$tElectrochimica acta$$v51$$x0013-4686$$y2006 000046888 8567_ $$uhttp://dx.doi.org/10.1016/j.electacta.2005.08.015 000046888 909CO $$ooai:juser.fz-juelich.de:46888$$pVDB 000046888 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000046888 9141_ $$y2006 000046888 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000046888 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0 000046888 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381 000046888 970__ $$aVDB:(DE-Juel1)73882 000046888 980__ $$aVDB 000046888 980__ $$aConvertedRecord 000046888 980__ $$ajournal 000046888 980__ $$aI:(DE-Juel1)PGI-3-20110106 000046888 980__ $$aI:(DE-Juel1)VDB381 000046888 980__ $$aUNRESTRICTED 000046888 981__ $$aI:(DE-Juel1)PGI-3-20110106 000046888 981__ $$aI:(DE-Juel1)VDB381