Journal Article PreJuSER-57459

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Modeling new particle formation during air pollution episodes: impacts on aerosol and cloud condensation nuclei

 ;  ;  ;  ;

2006
Taylor & Francis Philadelphia, Pa

Aerosol science and technology 40, 557 - 572 () [10.1080/02786820600714346]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The impact of new particle formation on regional air quality and CCN formation is for the first time explored using the UAM-AERO air quality model. New particles are formed by ternary nucleation of sulfuric acid, ammonia and water; subsequent growth of clusters to large sizes is driven by condensation of sulfuric acid and organic vapors, as described by the recently developed nano-Kohler theory. Application of the model in Athens (GAA) and Marseilles (GMA) reveals higher sulfuric acid condensational sink and gaseous sulfuric acid (hence nucleation rate) for the latter. However, limited quantities of organic vapors in the GMA inhibit the growth of the formed clusters; therefore new particle formation is more efficient in the GAA. A sensitivity analysis demonstrates that (1) uncertainty in vaporization enthalpy does not affect organic carbon formed by nucleation, and (2) an accommodation coefficient of unity gives excellent agreement of condensation sink with in-situ observations. Nucleation affects the aerosol size distribution, and can be an important contributor to CCN; locally it can be more important than chemical ageing of pre-existing aerosols.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Research Program(s):
  1. Atmosphäre und Klima (P22)

Appears in the scientific report 2006
Notes: Nachtrag
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-3
Workflow collections > Public records
IEK > IEK-8
Publications database

 Record created 2012-11-13, last modified 2024-07-09



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)