Journal Article PreJuSER-58497

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Image Potential and Field States at Ag(100) and Fe(110) Surfaces

 ;  ;

2007
APS College Park, Md.

Physical review / B 76(16), 165417 () [10.1103/PhysRevB.76.165417]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: By combining the first-principles concept based on the density functional theory with a model vacuum potential, we calculate image potential states and analogous ones in the presence of an electric field applied on a nonmagnetic Ag(100) surface and a magnetic Fe(110) surface. Our investigations are based on the Green-function embedding technique, which allows us to treat a truly semi-infinite surface and whence yields a continuum of bulk states. This turns out to be of crucial importance in order to investigate the qualitative difference between localized image or field states located in a band gap of the substrate and states in resonance with bulk states present at the same energies. This difference leads to remarkable changes in the binding energy versus field dispersion of the states. Furthermore, we show that in the case of the Fe(110) surface, the calculated magnetic exchange splitting increases with the electric field and is also modified by the transition from field states to surface resonance states.

Keyword(s): J


Note: Record converted from VDB: 12.11.2012

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IFF-1)
  2. Center of Nanoelectronic Systems for Information Technology (CNI)
  3. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
  4. Jülich-Aachen Research Alliance - Simulation Sciences (JARA-SIM)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)

Appears in the scientific report 2007
Database coverage:
American Physical Society Transfer of Copyright Ag ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2012-11-13, last modified 2023-04-26


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)