Journal Article FZJ-2016-03151

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na$_{3+x}$Sc$_{2}$Si$_{x}$P$_{3−x}$O$_{12}$

 ;  ;

2016
Elsevier Science Amsterdam [u.a.]

Solid state ionics 293, 18-26 () [10.1016/j.ssi.2016.06.005]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: In the search for novel sodium-ion conductors to be used in batteries for grid application, the thoroughly studied class of NASICON materials is of great interest due to compositional diversity and high ionic conductivity. The solid solution Na3 + xSc2(SiO4)x(PO4)3 − x with 0.05 ≤ x ≤ 0.8 was investigated for the first time. The various compositions were synthesized by solid state reaction and their crystallographic and electrical properties were measured. As a result, one of the best sodium-conductive NASICON materials to date was obtained for x = 0.4 (σNa,Total = 6.9 × 10− 4 S cm− 1 at 25 °C). Furthermore, the importance of the sodium concentration and size of lattice parameters on the ionic conductivity were investigated. The bulk ionic conductivity was correlated with the structural parameters along the conduction pathway of the sodium ions and confirm the key influence of the interatomic Na–O distances on sodium ion transport.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
  3. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2016
Database coverage:
Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
IEK > IEK-1
Publications database

 Record created 2016-06-15, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)