Journal Article FZJ-2016-04082

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
P–N Junctions in Ultrathin Topological Insulator Sb 2 Te 3 /Bi 2 Te 3 Heterostructures Grown by Molecular Beam Epitaxy

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
ACS Publ. Washington, DC

Crystal growth & design 16(4), 2057 - 2061 () [10.1021/acs.cgd.5b01717]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: We fabricated topological insulating Sb2Te3/Bi2Te3 p–n heterostructures by means of molecular beam epitaxy and characterized the topography of the films by scanning tunneling microscopy. Due to the van der Waals growth mode of the layered Te compounds, X-ray diffraction measurements show that the heterostructure is fully relaxed on the Si(111) substrate. Furthermore, scanning transmission electron microscopy measurements unveil the crystalline structure of the p–n interface. Energy dispersive X-ray spectroscopy and atom probe tomography enable the mapping of the chemical element distribution. We conclude that a diffusion of Sb and Bi during growth causes the formation of ternary compounds. In addition a Sb and Te accumulation at the substrate interface could be detected. Transport measurements prove the tunability of the carrier concentration via thickness variation of the p–n heterostructure.

Keyword(s): Information and Communication (1st) ; Condensed Matter Physics (2nd)

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 522 - Controlling Spin-Based Phenomena (POF3-522) (POF3-522)

Appears in the scientific report 2016
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database

 Record created 2016-07-29, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)