Journal Article FZJ-2016-04187

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Projected impact of climate change on irrigation needs and groundwater resources in the metropolitan area of Hamburg (Germany)

 ;  ;  ;  ;

2016
Springer Berlin

Environmental earth sciences 75(14), 1104 () [10.1007/s12665-016-5904-y] special issue: "Water in Germany"

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Irrigated agriculture is an important economic factor in the rural parts of the metropolitan area of Hamburg. It is commonly expected that climate change will reduce the groundwater quantities available for field irrigation. Against this background, the ratio of irrigation need and groundwater recharge (IGR-ratio) is suggested as an indicator to assess climate change impacts on the vulnerability of groundwater resources towards overexploitation by agricultural irrigation. The IGR-ratio has been assessed based on the distributed water balance model mGROWA, i.e. under consideration of the simulated groundwater recharge levels and the field crop-specific irrigation need of the commonly cultivated field crops. The spatial IGR-ratio distribution determined for the observed reference period 1971–2000 has shown that the delineated vulnerable areas coincide with the regions for which high irrigation quantities have been documented at present. Additionally, the IGR-ratio depicts the areas in which irrigation is currently still negligible, but in which the introduction of irrigation into agricultural practice would lead to an immediate overexploitation of the sustainably available groundwater budget. The possible impact of future climate on IGR-ratios was determined by using a model chain of mGROWA and the regional climate models REMO and WETTREG2010. The related ensemble simulations did not provide a uniform tendency of possible future IGR-ratio changes. Whereas the mGROWA–WETTREG2010 realisations projected a very high increase in the IGR-ratios, the mGROWA–REMO realisations did not show a pronounced trend of increasing IGR-ratios. Therefore, considerable uncertainties remain regarding the future bandwidth of IGR-ratio changes.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2016
Database coverage:
BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2016-08-04, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)