Journal Article FZJ-2016-05480

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Zero-Point Spin-Fluctuations of Single Adatoms

 ;  ;  ;

2016
ACS Publ. Washington, DC

Nano letters 16(7), 4305 - 4311 () [10.1021/acs.nanolett.6b01344]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin–orbit coupling, and (iii) electron–hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)
  2. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2016
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; No Authors Fulltext ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2016-10-19, last modified 2021-01-29