Journal Article FZJ-2016-06463

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation

 ;  ;  ;  ;  ;

2017
Wiley-Liss Bognor Regis [u.a.]

Glia 65(2), 388–400 () [10.1002/glia.23098]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl−]int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na+-K+-2Cl− cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl−]int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl−]int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl−]int. Other tested chloride channels or chloride transporters do not contribute to [Cl−]int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K+-Cl− cotransporter change resting Bergmann glial [Cl−]int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity.

Classification:

Contributing Institute(s):
  1. Zelluläre Biophysik (ICS-4)
Research Program(s):
  1. 553 - Physical Basis of Diseases (POF3-553) (POF3-553)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-1
Workflow collections > Public records
Workflow collections > Publication Charges
ICS > ICS-4
Publications database

 Record created 2016-11-21, last modified 2022-09-30



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)