Journal Article FZJ-2016-07329

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Morphology Dependency of Li$_{3}$V$_{2}$(PO$_{4}$)$_{3}$/C Cathode Material Regarding to Rate Capability and Cycle Life in Lithium-Ion Batteries

 ;  ;  ;  ;  ;

2017
Elsevier New York, NY [u.a.]

Electrochimica acta 232, 310-322 () [10.1016/j.electacta.2017.02.136]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Transition-metal phosphates have been extensively studied as potential electrode materials for lithium-ion batteries. For this application, high rate capability and cycling performance are required. In this work, we present a one-pot solvothermal synthesis process in combination with in situ carbonization for the tailoring of Li3V2(PO4)3/C morphologies with improvements of the electrochemical performance. These include an unstructured cluster, a needle-like microstructure, a flake-like microstructure and a hollowsphere microstructure. We demonstrate a significant impact of the particle morphology with respect to the electrochemical performance. The results obtained include, for instance, needle-like Li3V2(PO4)3/C showing a superior rate capability of about 72% (∼96 mAh g−1) of its theoretical capacity being maintained at 30 C, whereas the flake-like Li3V2(PO4)3/C exhibits outstanding cycling performance with a capacity retention of 97.1% (∼112 mAh g−1) of its initial capacity after 1000 cycles at 2 C. Our work demonstrates that the morphology of cathode particles defines a highly selective parameter to improve the electrochemical properties. Accordingly, strategies to selectively tailor particle morphology for a given application become feasible.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database

 Record created 2016-12-09, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)