Journal Article FZJ-2017-00118

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
18F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
SNM84042 Reston, Va.

Journal of nuclear medicine 58(4), 584-589 () [10.2967/jnumed.116.180075]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: In patients with brain metastasis, PET using labeled amino acids has gained clinical importance, mainly regarding the differentiation of viable tumor tissue from treatment-related effects. However, there is still limited knowledge concerning the uptake characteristics in patients with newly diagnosed and untreated brain metastases. Hence, we evaluated the uptake characteristics in these patients using dynamic O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET. Methods: Patients with newly diagnosed brain metastases without prior local therapy and 18F-FET PET scanning were retrospectively identified in 2 centers. Static and dynamic PET parameters (maximal/mean tumor-to-brain-ratio [TBRmax/TBRmean], biologic tumor volume [BTV], and time–activity curves with minimal time to peak [TTPmin]) were evaluated and correlated with MRI parameters (maximal lesion diameter, volume of contrast enhancement) and originating primary tumor. Results: Forty-five brain metastases in 30 patients were included. Forty of 45 metastases (89%) had a TBRmax ≥ 1.6 and were classified as 18F-FET–positive (median TBRmax, 2.53 [range, 1.64–9.47]; TBRmean, 1.86 [range, 1.63–5.48]; and BTV, 3.59 mL [range, 0.04–23.98 mL], respectively). In 39 of 45 brain metastases eligible for dynamic analysis, a wide range of TTPmin was observed (median, 22.5 min; range, 4.5–47.5 min). All 18F-FET–negative metastases had a diameter of ≤ 1.0 cm, whereas metastases with a > 1.0 cm diameter all showed pathologic 18F-FET uptake, which did not correlate with lesion size. The highest variability of uptake intensity was observed within the group of melanoma metastases. Conclusion: Untreated metastases predominantly show increased 18F-FET uptake, and only a third of metastases < 1.0 cm were 18F-FET–negative, most likely because of scanner resolution and partial-volume effects. In metastases > 1.0 cm, 18F-FET uptake intensity was highly variable and independent of tumor size (even intraindividually). 18F-FET PET might provide additional information beyond the tumor extent by reflecting molecular features of a metastasis and might be a useful tool for future clinical applications, for example, response assessment.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
  3. JARA-BRAIN (JARA-BRAIN)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-BRAIN
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Publications database

 Record created 2017-01-05, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)