Journal Article FZJ-2017-00287

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys

 ;  ;  ;  ;  ;  ;

2017
Elsevier Lausanne

Journal of alloys and compounds 695, 3530 - 3540 () [10.1016/j.jallcom.2016.11.417]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: We present a study of superconductivity in Ta-Nb-Hf-Zr-Ti high-entropy alloys (HEAs) by investigating four samples of different atomic concentrations (equimolar and off-equimolar) and number of components (4 and 5), subjected to different thermal treatments. The structure of the samples varied between a homogeneous random solid solution and a partially ordered nanostructure in the form of a three-dimensional grid of short-range ordered atomic clusters enriched in Zr and Hf that has developed during long-time annealing. Superconductivity was found to be a robust phenomenon, being quite insensitive to the actual structure of the material. All investigated samples were superconducting in the entirety of their volumes. The superconducting transition temperatures TC of the samples are scattered in the range between 5.0 and 7.3 K and this scatter could be related to the degree of structural and chemical inhomogeneity of the samples. In the samples with partially ordered nanostructure, short-range atomic clusters possess a slightly different TC than the Ta- and Nb-rich matrix. Our results also demonstrate the important fact that the formation, stability and structure of a regular (non-ideal) HEA mixture are determined by both, the minimization of the mixing enthalpy that favors local atomic ordering and the maximization of the mixing entropy that favors a random solid solution. The actual equilibrium state achieved during long-time thermal annealing via the atomic diffusion is generally partially ordered, and the resulting nanostructure is a sensitive function of the number of components constituting the HEA, their concentrations, the differences in the atomic radii and the annealing temperature and time. This nanostructure essentially determines the electronic properties of HEA materials.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database

 Record created 2017-01-11, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)