Journal Article FZJ-2017-00332

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Adsorption heights and bonding strength of organic molecules on a Pb-Ag surface alloy

 ;  ;  ;  ;  ;  ;  ;

2016
Inst. Woodbury, NY

Physical review / B 94(23), 235436 () [10.1103/PhysRevB.94.235436]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The understanding of the fundamental geometric and electronic properties of metal-organic hybrid interfaces is a key issue on the way to improving the performance of organic electronic and spintronic devices. Here, we studied the adsorption heights of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on a Pb1Ag2 surface alloy on Ag(111) using the normal-incidence x-ray standing waves technique. We find a significantly larger adsorption height of both molecules on the Pb-Ag surface alloy compared to the bare Ag(111) surface which is caused by the larger size of Pb. This increased adsorption height suppresses the partial chemical interaction of both molecules with Ag surface atoms. Instead, CuPc and PTCDA molecules bond only to the Pb atoms with different interaction strength ranging from a van der Waals–like interaction for CuPc to a weak chemical interaction with additional local bonds for PTCDA. The different adsorption heights for CuPc and PTCDA on Pb1Ag2 are the result of local site-specific molecule-surface bonds mediated by functional molecular groups and the different charge donating and accepting character of CuPc and PTCDA.

Classification:

Contributing Institute(s):
  1. Funktionale Nanostrukturen an Oberflächen (PGI-3)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)

Appears in the scientific report 2016
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-01-12, last modified 2023-04-26