Journal Article FZJ-2017-01881

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effects of spin excitons on the surface states of SmB 6 : A photoemission study

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Inst. Woodbury, NY

Physical review / B 94(23), 235125 () [10.1103/PhysRevB.94.235125]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about −9 meV at low temperatures. We attribute this feature to a resonance caused by the spin-exciton scattering in SmB6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. The existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.

Classification:

Contributing Institute(s):
  1. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 522 - Controlling Spin-Based Phenomena (POF3-522) (POF3-522)

Appears in the scientific report 2017
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-6
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-02-20, last modified 2023-04-26