001     827783
005     20240711113517.0
024 7 _ |a 10.1016/j.nme.2016.12.031
|2 doi
024 7 _ |a 2128/15280
|2 Handle
024 7 _ |a WOS:000398974100001
|2 WOS
037 _ _ |a FZJ-2017-01887
082 _ _ |a 333.7
100 1 _ |a Mao, Y.
|0 P:(DE-Juel1)165931
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505454608_21923
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Yttrium oxide thin films were prepared by reactive magnetron sputtering in different deposition condition with various oxygen flow rates. The annealing influence on the yttrium oxide film microstructure is investigated. The oxygen flow shows a hysteresis behavior on the deposition rate. With a low oxygen flow rate, the so called metallic mode process with a high deposition rate (up to 1.4 µm/h) was achieved, while with a high oxygen flow rate, the process was considered to be in the poisoned mode with an extremely low deposition rate (around 20 nm/h). X-ray diffraction (XRD) results show that the yttrium oxide films that were produced in the metallic mode represent a mixture of different crystal structures including the metastable monoclinic phase and the stable cubic phase, while the poisoned mode products show a dominating monoclinic phase. The thin films prepared in metallic mode have relatively dense structures with less porosity. Annealing at 600 °C for 15 h, as a structure stabilizing process, caused a phase transformation that changes the metastable monoclinic phase to stable cubic phase for both poisoned mode and metallic mode. The composition of yttrium oxide thin films changed from nonstoichiometric to stoichiometric together with a lattice parameter variation during annealing process. For the metallic mode deposition however, cracks were formed due to the thermal expansion coefficient difference between thin film and the substrate material which was not seen in poisoned mode deposition. The yttrium oxide thin films that deposited in different modes give various application options as a nuclear material.
536 _ _ |a 173 - Fusion Related Technology and Materials Research (POF3-173)
|0 G:(DE-HGF)POF3-173
|c POF3-173
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Engels, J.
|0 P:(DE-Juel1)164145
|b 1
|u fzj
700 1 _ |a Houben, A.
|0 P:(DE-Juel1)157772
|b 2
|u fzj
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 3
|u fzj
700 1 _ |a Steffens, Jonathan
|0 P:(DE-Juel1)165900
|b 4
700 1 _ |a Terra, A.
|0 P:(DE-Juel1)130166
|b 5
|u fzj
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 6
|u fzj
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 7
|u fzj
773 _ _ |a 10.1016/j.nme.2016.12.031
|g Vol. 10, p. 1 - 8
|0 PERI:(DE-600)2808888-8
|p 1 - 8
|t Nuclear materials and energy
|v 10
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/827783/files/1-s2.0-S2352179116302915-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/827783/files/1-s2.0-S2352179116302915-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/827783/files/1-s2.0-S2352179116302915-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/827783/files/1-s2.0-S2352179116302915-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/827783/files/1-s2.0-S2352179116302915-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/827783/files/1-s2.0-S2352179116302915-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:827783
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157772
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)2594
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-173
|2 G:(DE-HGF)POF3-100
|v Fusion Related Technology and Materials Research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21