Journal Article FZJ-2017-04110

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Structure and phase transitions of DMPC multilamellar vesicles in the presence of Ca2+ ions

 ;  ;

2017
MAIK Nauka/Interperiodics Publ. Moscow

Journal of surface investigation 11(1), 27–37 () [10.1134/S1027451016050499]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Results obtained via small-angle neutron scattering studies of the influence of calcium ions on the structure and phase transitions of phospholipid membranes are presented. The main phase transition temperature of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (1 wt %) multilamellar vesicles is demonstrated to increase by more than 1°C even when the calcium-ion content of the solution is low (0.1 mM). Detailed analysis of the multilamellar vesicles transition between “bound” and “unbound” state indicates the continuous character of the investigated process in both liquid and gel phases. The critical Ca2+ ion concentrations which initiate the destruction of the multilamellar structures and the formation of unilamellar vesicles are found to be ~0.3 mM in the gel and ~0.4–0.5 mM in the liquid-crystal phases during heating and ~0.5 mM in the phases under study upon cooling.

Classification:

Contributing Institute(s):
  1. Strukturbiochemie (ICS-6)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)

Appears in the scientific report 2017
Database coverage:
Emerging Sources Citation Index ; SCOPUS ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-7
Workflow collections > Public records
ICS > ICS-6
Publications database

 Record created 2017-06-13, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)